HOMININ PALEONTOLOGY (4 MILLION TO 10,0000 YEARS AGO)

EARLY MAN AND HOMININ PALEONTOLOGY

20120201-Olduvai_Gorge.jpg
Olduvai Gorge
Paleontology or palaeontology is the scientific study of life that existed prior to or during the Holocene period (roughly 11,700 years ago). It includes the search for, study and analysis of fossils. A paleontologist is a paleontology scientist. Hominin paleontologists study hominins, which first appeared roughly four million years ago.

Hominins are defined as creatures that stand upright and walk and run primarily on two legs, while apes are creatures that hunch over and, although capable of walking on two legs, prefer to use their arms when moving on the ground. Before the mid 2000s, scientists often referred to hominins as hominids. Hominids are all modern and extinct great apes: gorillas, chimps, orangutans and humans, and their immediate ancestors. Not gibbons. Hominins are any species of early human that is more closely related to humans than chimpanzees, including modern humans themselves.

Many important discoveries and insights into our human ancestors are taking place in the field of genetics and ground zero for this activity is the Max Planck Institute for Evolutionary Anthropology, in Leipzig, Germany. Elizabeth Kolbert wrote in The New Yorker: “The Max Planck Institute... is a large, mostly glass building shaped a bit like a banana. The institute sits at the southern edge of the city, in a neighborhood that still very much bears the stamp of its East German past. If you walk down the street in one direction, you come to a block of Soviet-style apartment buildings; in the other, to a huge hall with a golden steeple, which used to be known as the Soviet Pavilion. (The pavilion is now empty.) In the lobby of the institute there’s a cafeteria and an exhibit on great apes. A TV in the cafeteria plays a live feed of the orangutans at the Leipzig Zoo.” [Source: Elizabeth Kolbert, The New Yorker, August 15, 2011]

Scientists have found fossils of 5,000 individual hominins as far back as 4.4 million years, perhaps 7 million years. Famous discoveries include Java Man, Peking Man, the Taung Child, Lucy and the first Neanderthals (See Java Man, Peking Man, Taung Child and Neanderthals. Pitsdown Man is a famous fraud.

Websites and Resources on Hominins and Human Origins: Smithsonian Human Origins Program humanorigins.si.edu ; Institute of Human Origins iho.asu.edu ; Becoming Human University of Arizona site becominghuman.org ; Hall of Human Origins American Museum of Natural History amnh.org/exhibitions ; The Bradshaw Foundation bradshawfoundation.com ; Britannica Human Evolution britannica.com ; Human Evolution handprint.com ; University of California Museum of Anthropology ucmp.berkeley.edu; John Hawks' Anthropology Weblog johnhawks.net/ ; New Scientist: Human Evolution newscientist.com/article-topic/human-evolution

Hominin Paleontologists

Scientists that study hominins are known for the ferocious critiques that they hurl at their colleagues. The field is highly competitive and careers can be made with a single discovery. Jon Mooallemjan wrote in the New York Times magazine: “The study of human origins, I found, is riddled with vehement disagreements and scientists who readily dismantle the premises of even the most straightforward-seeming questions. [Source: Jon Mooallemjan, New York Times magazine, January 11, 2017 ||*||]

Jennifer Raff wrote in The Guardian: “Keeping pace with new developments in the field of human evolution these days is a daunting prospect. It seems as though every few weeks there’s an announcement of exciting new findings from hominin fossils, or the recovery of an ancient genome that significantly impacts our understanding of our species’ history. [Source: Jennifer Raff, The Guardian, July 18, 2017. Raff is a geneticist who specialises in the study of human variation among contemporary and ancient populations |=|]

“The best way to keep up is by regularly revisiting and reassessing a few core questions. When and where did our species first appear? How and where did we migrate? What was our relationship to our (now-extinct) hominin relatives? What evolutionary and cultural factors influenced our histories? How do new findings change the answers to these questions? Are they generally accepted by the relevant community of experts, or are they provisional or controversial?” |=|]

Describing a symposium on early hominins at the Turkana Basin Institute in Kenya in August 2014, Jamie Shreeve wrote in National Geographic: “For four days the scientists huddled together in a spacious lab room, its casement windows open to the breezes, casts of all the important evidence for early Homo spread out on tables. One morning Meave Leakey (who’s also a National Geographic explorer-in-residence) opened a vault to reveal brand-new specimens found on the east side of the lake, including a nearly complete foot. When it was his turn to speak, Bill Kimbel of the Institute of Human Origins described a new Homo jaw from Ethiopia dated to 2.8 million years ago—the oldest member of our genus yet. Archaeologist Sonia Harmand of Stony Brook University dropped an even bigger bombshell—the discovery of dozens of crude stone tools near Lake Turkana dating to 3.3 million years ago. If stone tools originated half a million years before the first appearance of our genus, it would be hard to argue anymore that the defining characteristic of Homo was its technological ingenuity.” [Source: Jamie Shreeve, National Geographic, September 2015 /+]

Stone Age Periods

20120201-1835_New-York-Sun-Moon-Hoax-Winged-Hominids.gif
1835 winged hominin hoax
Pleistocene 1,000,000 (or 500,000) to 10,000 years ago, period of ice ages.

Paleolithic, 500,000-10,000 B.C., refers to cultures of the Pleistocene period

Lower Paleolithic, 500,000-250,000 B.C..

Middle Paleolithic, 250,000-60,000 B.C..

Upper Paleolithic, 60,000-10,000 B.C..

Mesolithic is sometimes used to describe a period between the Paleolithic and Neolithic periods.

Neolithic (from about 9500 to 6000 B.C.), last stage of stone age, the use of polished stone tools and the beginning of agriculture

History of Paleontology

One of the earliest published reports on prehistoric man was made in 1800 by English antiquarian John Frere. In his “Account of Flint Weapons Discovered at Hoxne in Suffolk” he described flint hand axes found below a layer of mammoth bones by workmen digging up clay for bricks and concluded the tools were “fabricated and used by a people who had not the use of metals” and lived in “a very remote period indeed, even beyond that of the present world.” The report was largely ignored. In the 1840s, French prehistorian Jacques Boucher de Perthese trained workmen to search for stone axes.

The science of paleontology owes it origin to Charles Darwin’s book "On the Origin of Species”, which was published in 1859 and shook conventional thinking with the theories of evolution and natural selection. Studies of geology had already opened mind to enormity of time and raised questions about the Biblical time line. The first remains ever found of a prehistoric human ancestor were found in 1856 in the Neander Valley in Germany. Darwin provided a theory and framework to attach these discoveries and others that followed.

The words Paleolithic and Neolithic, meaning “Old Stone Age” and “New Stone Ages,” and the word “cave-man” were coined by John Lubbock, Darwin’s only student. Many of the those who study early man and hominin today are called paleoanthropologists.

Andre Lero-Gourhan revolutionized the practice of excavations by recognizing that vertical digs destroy the context of a site. Over 20 years (1964-1984) he and his students painstakingly excavated “scraping away the soil in small horizontal squares and making notes of where everything was located, in the 12,000-year-old site of Pincevent, offering of the most detailed picture up to that point of life in the Paleolithic period.

Hominins, the Missing Link and the Evolution of Man

Hominins are defined as creatures that stand upright and walk and run primarily on two legs, while apes are creatures that hunch over and, although capable of walking on two legs, prefer to use their arms when moving on the ground. The earliest hominins, the genus Australopethecus, possesses long arms, short legs, a large small brain and a large face. These creatures would appear to us today as more ape-like than human-like. So far these species have been discovered only in eastern, northern and south Africa.

There are two major groups, or genera of hominins: “Australopithecus” , which lived between 4 million and 1 million years ago and includes a number of species; and “Homo” , which appeared around 2.5 million years ago and includes, “Homo habilis” , “Homo erectus “ and “Homo sapiens” (modern man).

Scientists describe Africa is the "cradle of mankind" because all of the oldest hominin remains have been found there. In the mid 2000s, scientists began calling homonids “homonins.”

Modern man (us) appeared at least 100,000 years ago, maybe 200,000 years ago, and are believed to have evolved from: 1) Australopithecus aferenis (3.8 to 3 million-years-ago); 2) Australopithecus africanus (3 to 2 million-years-ago); 3) Homo habilis (2 to 1.5 million-years-ago), and 4) Homo erectus (1.8 to .5 million-years-ago). Most Scientists believe that the other ancient man species led to dead ends. There is a lot of controversy and debate in this field. The study of early man has often been posed as a quest for “the missing link.” Most scientists bristle at the term. Tim White, a paleoanthropologist at the University of California, Berkeley, told National Geographic, “The term is wrong in so many ways, it’s hard to know where to begin. Worst all is the implication that at some point there existed something halfway between chimp and human. That’s a popular misconception that has plagued evolutionary science from the beginning.”

Messy Models of the Evolution of Man

Early attempts to plot the course of human evolution tried to present nice neat linear models with one species leading directly to another. The more discoveries that were made the less the neat models became.

20120201-Human-evolution 2.jpg
early theory of evolution
Modern models of human evolution look like groups of trees with lots of entangled branches — some that lead to dead ends and others that continue on and interconnect to other branches. In the old days many thought who studied early man were regarded as “lumpers” because they tended to lump discoveries into group. In recent years they have taken a backseat too “splitters,” who shy away from grouping new discoveries and instead often define them as new, separate species.

New discoveries have also debunked theories that human evolution was marked by a series of nice, neat progressions and advancements. Sometimes new discoveries dated to a certain period seem more primitive than older finds.

Some features in one species appear and then disappear and then re-emerged in later species, making the features insignificant as some sort of milestone. Bernard Wood of George Washington University told Newsweek, “Similar traits evolved more than once, which means you can’t use them as gold-plated evidence that one fossil is descended from another or that having an advanced trait means a fossil was a direct ancestor of modern humans.”

Lee Berger, a paleoanthropologist at the University of the Witwatersrand, says that rather than a tree branching from a single root, the best metaphor for human evolution is a braided stream: a river that divides into channels, only to merge again downstream. Jamie Shreeve wrote in National Geographic: “Similarly, the various hominin types that inhabited the landscapes of Africa must at some point have diverged from a common ancestor. But then farther down the river of time they may have coalesced again, so that we, at the river’s mouth, carry in us today a bit of East Africa, a bit of South Africa, and a whole lot of history we have no notion of whatsoever. Because one thing is for sure: If we learned about a completely new form of hominin only because a couple of cavers were skinny enough to fit through a crack in a well-explored South African cave, we really don’t have a clue what else might be out there.” [Source: Jamie Shreeve, National Geographic, September 2015 /+]

Fossilized Bones and Hominins

Very few living organisms leave behind fossil traces. The bones and remains of most ancient creatures decay or wither away to dust. A particular set of circumstances has to unfold for bones to be preserved after a creature dies.

Since the number of homonids is very small when compared to the total number of animals that have existed in the history of the world their bones are particularly hard to find. Teeth enamel is the hardest substance in the human body and thus hominin teeth are most common hominin fossils.

For the bones to be persevered ideally they have to be picked clean (by scavengers like hyenas) of material which might cause the bone to rot, and then be covered quickly by sediment (by material carried in a flash flood, for example) before they decay in the sun. In many cases, after thousands of years the water-soluble materials in the bones are leeched away, leaving behind fossils. By this time additional layers of sediment have covered the bones. For the fossils to be found they need to be exposed in a place where a scientist or fossil hunter can find them. Geological processes such as uplift and erosion have to occur to bring the fossils to the surface. [Source: Kenneth Weaver, National Geographic, November 1985 [┹]

Discovering Early Hominin Bones

Important discoveries are very rare events. Even in the richest sites, hominin fossil generally make up less than 0.1 percent of all fossils found. Some scientists spend their whole life searching without finding anything.

Few discoveries have been made areas with dense vegetation. Find are usually made in arid, sparsely vegetated areas where seasonal rains erode the landscape, exposing fossil bones. Many discoveries have been on the surface of the earth by sharp-eyed fossil hunters — many of them people hired by scientists not the scientists themselves — who cover large areas on foot. Only highly promising areas are excavated.

Paleoanthropologists, paleontologists, archaeologists and their helpers search for bone fragments exposed by erosions. Once a bone has been found or a promising site has been selected, paleontologists mark discoveries with flags, so their context can be recorded and the location can be meticulously examined. Obvious fossils such as teeth are picked up by hand. Fossils encased in rock are removed dental picks and porcupine quills. Soil is sieved for small pieces teeth and bone. It is very slow work. When prehistoric bones are found they are immediately covered in plaster for their protection.

Hominin fossils tend to be very delicate. Many bones are found crushed. Some turn to powder when they are extracted. When bones are found scientists and fossil hunters often repeatedly douse them with hardeners, clear away the soil or cut away the rock around them, and immediately seal the bones or wrap them in plaster. Many hominin fossils found in east Africa show evidence of being ravaged by hyenas after death.

Assembling and Working with Hominin Bones

20120201-Cro Magnon bone.jpg
bones in stone
Assembling hominin bone fragments and making sense of what is found after bones are found is a difficult, time consuming process. In most cases the process involves shifting through large amounts of dirt, sand and rocks near a site where an initial discovery is made to find bones and bone fragments that belong to the same specimen and other member of its species. After that scientists work out where layers containing similar fossils might have eroded to and then sifting through the dirt, sand and rocks in these places to look for more bones and fragments. After that stage is completed — a process that can take months — the pieces are taken to a lab and fitted together, a process that can take years.

In some rare situations bones are found fossilized in rocks like those of dinosaurs bones. This doesn’t happen as often with hominins because the sediments they are found in are not that old and generally have not had enough time to form into rock. When such a hominin fossil is found it is considered a great discovery because the bones are found together in one place and looking high and low for the pieces is not necessary. On the down side though it can be painstaking work — done largely with dental tools — to remove the bones from the rock without damaging the bones. Again this process takes years and often require even more time to place fragments together and work out where the bones go in relation to the others.

In the lab the fossil fragments are sorted on a tray and the material the fragments are located in is moistened with acetone which makes it easy to distinguish fossil from rock. Under a microscope rock is removed from rock-encased fossils grain by grain using engraving tools. Sometimes CT scans and 3-D reconstruction software are used to figure out how bones and bone fragments — too delicate to handle — fit together.

Recently scientists have started using huge, expensive synchotors, normally used in nuclear particle physics, to zap hominin bones and teeth with radiation and see what turns up. The technique is especially useful in analyzing teeth to see what is revealed in each layer of enamel that were applied in various stages of a subject’s life. Using this method scientists have gained insight into what subjects ate, their health and other information at different times in their life sort of like the way tree rings can supply information about fires and droughts as well as age.

Scientists often can determine how old a fossilized hominin was when it died by noting how worn the teeth are. Pitted tooth enamel is an indicator or starvation and malnutrition. The easiest way to determine the sex is by examining the pelvic bones. Females have large round openings, large enough to accommodate the head of a baby. Males have a heart-shaped opening.

Archaeology Techniques

20120201-Lucy 2.jpg
Lucy bones
Archaeologists crawl, kneel and laboriously brush away dirt with a brush from objects they unearth. Soil, sand and excavated material are sifted through screen to retrieve small artifacts.

Archaeologists often dig a series of trial trenches to figure out the best places to excavate. Photographs are taken of each phase of the work for future reference. Soil is sifted so that small objects are not overlooked. When something is found it is often swept with a brush and removed with a trowel so it doesn’t break.

Artifacts are brought into workshops are catalogued. Delicate objects are restored in situ. Other objects are restored in the work room or laboratory.

It is very important to record the position of all the objects that are found. The vertical position of an object, as defined by the layer in the earth, or strata, where it is found reveals its date or at least it relations to what came before and after it. Archaeologists carefully remove earth layer by layer when they are excavating so they can determine the date or period of objects and not mix them up with objects from other periods.

The strata are often look like the layers of a layer cake, with the oldest layers being the ones that are the deepest in the earth. Each layer and the locations of artifacts are carefully measured, often with surveying equipment. The layers can be dated by using the dating methods listed below.

The horizontal position of an object and it locations in relation to other objects often give clues to what the object is used for. The locations of each significant object found are recorded using a grid system that usually can be overlaid on the excavation site. These days measurements can be done with lasers and excavation records and survey data can quickly be transferred to computer to create a three-dimensional model of excavated objects and their positions.

Modern Archaeology Techniques

Sites are located with ariel surveys and satellite imagery. Satellite images sometimes reveals the outlines of promising sites and trade routes obscured by sands or vegetation cover or sites that are otherwise missed on the ground. Seismological devices used by geologists are widely employed by archeologists.

Foods and drinks from ancient times can be determined by analyzing samples in a spectrometer and looking for organic compounds, especially long-chain lipids, triglycerides and fatty acids that characterize many foods. The presence of beer can be determined by the presence of calcium oxalate (“beerstone”). Wine can be determined by tartaric acid and its salts. Samples can be extracted from pottery and jars with solvents. Specific fatty acids can be markers for meat such goat, mutton and pork. Anisic acid is an indicator of anise, or fennel.

Using Ground Penetrating Radar to Find and Study Ice Age Footprints

Matthew Robert Bennett wrote: Ground penetrating radar was first used during the Vietnam War to reveal bunkers below ground. Today, engineers use it to spot cracks in railway tracks and girders. It works by sending signals into the ground which bounce back to reveal subsurface structures. It can be used for imaging big stuff, including buried walls in ancient ruins; in 2019 study, we used it to find buried animal tracks from the Ice Age. Our research team has been working for several years at White Sands National Monument in New Mexico in the US where one of the largest collection of vertebrate animal tracks from the Ice Age can be found. These tracks are preserved on a dried lake bed called Alkali Flat. Because they’re so difficult to make out, they’re locally referred to as “ghost tracks”. [Source: Matthew Robert Bennett, Professor of Environmental and Geographical Sciences, Bournemouth University, The Conversation, November 12, 2019]

“Not only were we able to identify and map large tracks made by big animals such as mammoths and giant ground sloths, but to our surprise, we could also see those of the human hunters that stalked those animals. Imaging footprints of Ice Age giants, and their hunters, without excavating the tracks has huge advantages for their conservation.

We also noticed something interesting beneath the mammoth tracks in the radar data. Below the base of the footprint, we consistently saw something resembling a hook in the radar image. This was completely unexpected. We weren’t sure what this was at first, but suspected that it might be due to the sediment below being compressed by the footprint. If so, this could provide crucial information about the way the animal walked. If this was indeed a pressure record, then it would likely match the pressure record from a close relative, like an elephant.

“Foot pressure data for elephants, by the way, are rare — you can imagine how hard it is to get them into the lab and walking on delicate scientific instruments. Thanks to colleagues from the Royal Veterinary College in London and Monash University, we got our hands on some of this data. The pressure record for elephants turned out to be similar to the hook-like structures revealed in the radar data beneath the mammoth tracks. This led us to conclude that the radar was not only picking out the shape of the footprint, but also giving us much more data on the pressure exerted by the foot on the ground as the mammoth walked.

For scientists studying the way extinct animals walk, this was very exciting. It’s the equivalent of getting an extinct animal to come into the lab and walk on a force plate. Best of all, the radar imaging allows us to study how these ancient creatures walked without having to disturb the footprint itself. We think we’ll be able to use the same technique at other sites to image the pressure pattern beneath a dinosaur’s foot, just as if we’d managed to bring a living specimen into the lab. We should also be able to use this technology to map human footprints at other sites, especially where digging could be disruptive. There are famous sites, such as Laetoli in Tanzania, where footprints of the oldest human ancestors can be found. We’re not quite there yet, but given the right circumstances, we think it’s possible.

Brains, Faces and Mikhail M. Gerasimov

20120201-model.jpg
Paleoneurology is the study of the brains of ancient hominins. This is primarily done by analyzing the structure of the brain by examining the insides hominin skulls and through DNA research of genes linked with brain activity found in both humans and apes.

These days is becoming common to reconstruct faces of ancient hominins using methods pioneered by Mikhail M. Gerasimov (1907- 1970), a Russian archaeologist, paleontologist and sculptor who developed a theory for approximating the faces of Ice Age hunters and famous people like Ivan the Terrible and Tamerlane by analyzing their skull features. His techniques have been adopted by forensics experts around the world to identify victims of murder, war crimes and other atrocities whose bones were found but not identified. Scientists using his techniques have re-created the faces of King Tut, the 9,200-year-old Kennewick Man found in the northwest United States, and all the great czars.

Gerasimov was the not the first to re-create faces based on skulls but was the first to use scientific methods to do Tapping into his vast reservoir of knowledge of facial and skull features based on years of working in forensic science, archaeology and anthropology, he applied strips of clay to a cast of skull to create likeness of skull’s owner. Gerasimov was the inspiration for the brilliant scientist, who helps solve the murder of thee victims who had their faces peeled away in the novel “ Gorky Park” by Martin Cruz Smith and a film based on the novel with William Hurt.

Gerasimov was born in St. Petersburg and grew up in the Siberian city of Irkutsk, As a boy he liked to collect mammoth bones and mix the bones of animals, say, putting a cats skull on the skeleton of a duck. He studied archaeology at Irkutsk University and Leningrad and helped establish the Laboratory for Plastic Reconstruction (now the Institute of Ethnology) in Leningrad. In the early 1940s Gerasimov was sent to Uzbekistan to open the tomb of Tamerlane, an act which is said to have unleashed a curse that unleashed World War II on the Soviet Union.

Techniques Used in Reconstructing Hominin Faces

Scientists using Gerasimov’s techniques begin by making a mold and copy of the skull and inserting pegs cut to average tissue thickness based on sex, race and size of the individual. Glass eyes were added, and clay strips of proper thickness are laid across the skull mold. Features are then added based on information gleaned from facial bones.

With hominin skulls which are mostly collections of fragment glued together, missing sections are reconstructed out of epoxy compounds, and distortions are corrected often by comparing the right and left side. Large missing spots are sculpted in clay based on modern primate anatomy. The glass eyes are inserted early and surrounded by musculature. The shape and size of the nose are calculated from surrounding none attachments. Superficial representations of facial muscles, fats and other tissues are added. The tissue is then covered with a clay skin. Using mold, features are impressed into the surface.

A silicon rubber mold is then made of the entre reconstruction and a new cast is created in urethane rubber. Skin tones are painted onto the finished cast. Hairs are individually punched into the skin and finishing touches are added. After the reconstruction is photographed, the image can be digitally enhanced.

Many scientists who use Gerasimov’s techniques have extensive training an anatomy, osteology and craniology. The key to get a face right is often in the details . Permanent ridges left by face muscles, for example, may provide clues to kind of expression worn on the face most of the time. The nose is often created based on a mirror image of the skeletal structure around the nostrils

Studying Ancient Diets

Ann Gibbons wrote in National Geographic: “Until agriculture was developed around 10,000 years ago, all humans got their food by hunting, gathering, and fishing. As farming emerged, nomadic hunter-gatherers gradually were pushed off prime farmland, and eventually they became limited to the forests of the Amazon, the arid grasslands of Africa, the remote islands of Southeast Asia, and the tundra of the Arctic. Today only a few scattered tribes of hunter-gatherers remain on the planet. [Source: Ann Gibbons, National Geographic, September 2014 /*/]

“That’s why scientists are intensifying efforts to learn what they can about an ancient diet and way of life before they disappear. “Hunter-gatherers are not living fossils,” says Alyssa Crittenden, a nutritional anthropologist at the University of Nevada, Las Vegas, who studies the diet of Tanzania’s Hadza people, some of the last true hunter-gatherers. “That being said, we have a small handful of foraging populations that remain on the planet. We are running out of time. If we want to glean any information on what a nomadic, foraging lifestyle looks like, we need to capture their diet now.” /*/

“So far studies of foragers like the Tsimane, Arctic Inuit, and Hadza have found that these peoples traditionally didn’t develop high blood pressure, atherosclerosis, or cardiovascular disease. “A lot of people believe there is a discordance between what we eat today and what our ancestors evolved to eat,” says paleoanthropologist Peter Ungar of the University of Arkansas. The notion that we’re trapped in Stone Age bodies in a fast-food world is driving the current craze for Paleolithic diets. The popularity of these so-called caveman or Stone Age diets is based on the idea that modern humans evolved to eat the way hunter-gatherers did during the Paleolithic—the period from about 2.6 million years ago to the start of the agricultural revolution—and that our genes haven’t had enough time to adapt to farmed foods.” /*/

Gleaning Information About Diet and Environment from Teeth Enamel

Zach Zorich wrote in Archaeology magazine: Studies of chemical isotopes in tooth enamel are providing new lines of evidence concerning the lives of early hominins. As tooth enamel forms during the first eight years of life, it absorbs chemicals from the food and water that people consume and, indirectly, from the bedrock in the area where they reside. That chemical signature provides an important record of an individual's life, which scholars are now learning to read. Two recent isotope studies are changing paleoanthropologists' understanding of hominins who lived roughly 2.2 to 1.4 million years ago. [Source: Zach Zorich, Archaeology magazine, Volume 64 Number 5, September-October 2011]

“A study published in Proceedings of the National Academy of Sciences examined the amounts of carbon isotopes in two Paranthropus boisei teeth from eastern Africa. Carbon isotopes reveal details about diet, and the research showed that these individuals dined on grasses and sedges. Previously, P. boisei had been nicknamed Nutcracker Man because paleoanthropologists believed the species' large teeth and powerful jaws were an evolutionary adaptation to eating hard foods.

“A second study, published in the journal Nature, measured strontium isotopes in the teeth of Australopithecus africanus and Paranthropus robustus from southern Africa. Strontium isotopes offer evidence of the bedrock in an individual's early home area because plants and water absorb strontium from the bedrock, which is then absorbed by tooth enamel. This study showed that females of both species tended to grow up in areas with a different type of bedrock than the places where their teeth were ultimately found. The finding could indicate that females left the social groups they were born into and moved away to live with their mates.

“The major impact of this research has less to do with the results of the two studies and more to do with providing paleoanthropologists with a new research tool, according to the University of Colorado's Matthew Sponheimer, who took part in both projects. "If we can be clever enough, we might be able to design ways to get at interesting behaviors that had seemed forever lost," he says.

Image Sources: Wikimedia Commons

Text Sources: National Geographic, New York Times, Washington Post, Los Angeles Times, Smithsonian magazine, Nature, Scientific American. Live Science, Discover magazine, Discovery News, Natural History magazine, Archaeology magazine, The New Yorker, Time, BBC, The Guardian, Reuters, AP, AFP and various books and other publications.

Last updated June 2024


This site contains copyrighted material the use of which has not always been authorized by the copyright owner. Such material is made available in an effort to advance understanding of country or topic discussed in the article. This constitutes 'fair use' of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit. If you wish to use copyrighted material from this site for purposes of your own that go beyond 'fair use', you must obtain permission from the copyright owner. If you are the copyright owner and would like this content removed from factsanddetails.com, please contact me.